Differences between supervised learning and unsupervised learning in machine learning

 S.No. Supervised learning Unsupervised learning
 1. Knowledge of output learning with the presence of an expert. No knowledge of output classes
 2.Data is labeled with a class or value                                                                                                                  Data is unlabelled or value unknown.                                 
 3. Its goal is to predict class of value label. Its goal is to determine data patterns.
 4. Examples- Neural network, SVN decision tree, Bayesian classifiers, etc.                                                                                    Examples- k-means, genetic algorithms, clustering approaches, etc.

No comments:

Post a Comment

Algorithm For Loss Function and introduction

Common Loss functions in machine learning- 1)Regression losses  and  2)Classification losses .   There are three types of Regression losses...